Расчет корма для рыбы в узв

Корма “Aллер Aква” предназначены для выращивания личинок, молоди, товарной рыбы и производителей карпа, форели, лосося, осетровых рыб. Планируя промышленное выращивание рыбы, необходимо иметь представление об общем требуемом количестве кормов на всех этапах выращивания. Предлагаемая схема предназначена для предварительного расчета общего количества кормов различных марок и размеров кормовых частиц и планирования затрат на корма для всего цикла выращивания рыб.
Принцип планирования потребности в кормах состоит в последовательном расчете количества рыб (с учетом данных о выживаемости) на каждом технологическом этапе выращивания, определении прироста биомассы рыбы на этапе и вычислении требуемого количества или кормов по планируемому ККЗ. Под технологическим этапом выращивания рыб здесь понимается период использования корма определенной марки и размера кормовых частиц. Исходными данными служат общая планируемая биомасса выращенной рыбы (объем реализации товара) и средняя планируемая навеска товарной рыбы, по которым рассчитывается количество товарной рыбы в штуках в конце последнего этапа выращивания.
Подобные расчеты удобнее выполнять в табличной форме. В качестве примера приведены расчеты потребности в кормах для выращивания до товарного размера форели — при естественном ходе температур, а также карпа и осетра — на сбросных теплых водах электростанций.
Промышленное выращивание рыбы: этапы расчета производства
- Разбивка всего цикла промышленного выращивания рыбы на технологические периоды и этапы производится в соответствии с технологией, принятой на хозяйстве. Для каждого периода определяется навеска рыбы и общий планируемый отход за период. В качестве примера, в таблице приведены данные о разбивке на технологические периоды циклов выращивания рыб в садках или бассейнах: форели — при естественном ходе температур, карпа и осетра — на сбросных теплых водах электростанций.
Технологический период | Средняя масса рыбы, г | Отход, % |
---|---|---|
Выращивание форели | ||
1. Подращивание личинок | 0-0,5 | 20 |
2. Выращивание молоди | 0,5-1 | 20 |
3. Выращивание сеголеток | 1-50 | 20 |
4. Зимовка годовиков | 50-100 | 10 |
5. Выращивание товарных двухлеток | 100-700 | 5 |
Выращивание осетра (в условиях УЗВ) | ||
1. Выращивание личинок и молоди | 0,25-3 | 30 |
2. Выращивание сеголеток | 3-50 | 10 |
3. Выращивание товарных двухлеток | 50-2000 | 20 |
Выращивание карпа (в садках на теплой воде) | ||
1. Подращивание личинок до 50 мг | 0-0,05 | 40 |
2. Выращивание личинок до 300 мг | 0,05-0б3 | 30 |
3. Выращивание сеголеток | 0,3-50 | 20 |
4. Зимовка годовиков | 50-100 | 5 |
5. Выращивание товарных двухлеток | 100-1000 | 10 |
Показатели роста и отхода рыб при выращивании в различные периоды следует уточнить в соответствии с условиями и особенностями технологии конкретного хозяйства.
- Планирование марки корма, размера крупки и гранул в соответствии с массой рыбы и технологией, принятой на хозяйстве.
- Планирование отхода рыбы на отдельных технологических этапах, когда используется корм определенной марки и размера кормовых частиц: отход за период распределяется по этапам, с учетом опыта выращивания рыбы на конкретном хозяйстве.
- Определение количества рыбы в штуках в начале и конце каждого этапа: обратный пересчет количества рыбы в конце и начале каждого этапа, начиная с планируемых результатов реализации (конец последнего этапа выращивания). Количество рыбы в начале этапа определяется суммированием ее количества в конце этапа и количества отхода за этап.
- Определение прироста средней массы за этап: по разности массы тела в начале и конце каждого этапа промышленного выращивания рыбы.
- Определение прироста биомассы рыбы на каждом этапе выращивания: произведение количества рыбы в начале этапа и прироста средней массы рыбы за этап.
- Определение планируемого коэффициента кормовых затрат (ККЗ) по этапам выращивания — это могут быть данные полученные по фактическим результатам использования кормов “Aллер Aква” на конкретном хозяйстве или приблизительные данные, обобщенные нами по опыту многих хозяйств.
- Определение потребности в кормах каждой марки и размера частиц, используемых на отдельных этапах выращивания: произведение прироста биомассы и коэффициента кормовых затрат. Здесь следует также учесть возможные потери кормов, величина которых зависит от технологии выращивания рыбы на хозяйстве, опыта обслуживающего персонала (например, известно, что потери кормов при выращивании рыбы в садках могут составлять до 5%).
- Расчет корма под заказ делается с учетом используемой “Аллер Аква” расфасовки кормов. Все стартовые корма “Aллер Aква”, а также корм для производителей лососевых рыб Aller REP фасуются в мешки по 20 кг, корм для молоди Aller Mini и продукционные корма — в мешки по 25 кг. Кроме того, стартовые корма c крупкой 00, 0, 1 и 2 при небольшой потребности по желанию заказчика могут быть упакованы в пластмассовые ведерки по 6 кг. Корм “Aller Futura”, кр. 00, упаковывается в ведёрки по 1,5 кг.
Примеры расчетов потребности в кормах для выращивания форели до товарного размера – при естественном ходе температур, а также карпа и осетра – на сбросных теплых водах электростанций можно посмотреть, скачав файл в *pdf-формате “Примеры расчетов потребности в кормах для выращивания рыб”.
На данный момент нет содержимого, классифицированного этой категорией.
Источник
Расчет необходимого количества бассейнов для выращивания форели
Расчет необходимого количества бассейнов для выращивания форели
Определить необходимое количество бассейнов для выращивания можно следующим образом. Допустим, что конечная плотность посадки рыбы составляет 40 кг/м3, необходимо вырастить 1000 кг рыбы, следовательно, потребуется (1000:40) 25 м3 рабочего объема. Допустим, что используются емкости размером 2х2×0,8 м, т.е. площадь дна одного бассейна составляет 4 м2. При уровне воды в бассейне 0,2; 0,3; 0,4; 0,5 и 0,6 м объем воды составит соответственно 0,8; 1,2; 1,6; 2,0 и 2,4 м3. С помощью простых расчетов можно определить, что потребуется 14 бассейнов. При глубине воды в бассейне 50—60 см имеется запас рабочего объема — требуется 25 м3, а при уровне воды в бассейне 50—60 см рабочий объем составит 28—33,6 м3.
При бассейновом методе выращивания форели, если подача морской и пресной воды осуществляется механическим способом, наиболее рационально выращивать рыбу при такой стартовой плотности посадки, которая будет на 10—20% ниже максимальной. По мере роста рыбы и приближения к максимальной плотности посадки уровень воды в бассейне поднимется, увеличатся рабочий объем и установится соответствующий водообмен. Если возможности увеличения рабочего объема воды в бассейне исчерпаны, то часть рыбы отлавливается и выращивание продолжается.
В зависимости от размера форели уровень воды в бассейне должен составлять: при массе 0,3—10 г — 0,1—0,2 м, при массе 10—50 г — 0,3 м, при массе 50—100 г — 0,4—0,5 м, при массе 100—500 г — 0,5—0,8 м, более 500 г — до 1,5 м.
К необходимым условиям выращивания следует отнести отсутствие загрязнения воды, содержание растворенного кислорода на вытоке не ниже 7 мг/л, температуру воды в пределах 4—18 °C.
В качестве примера можно рассмотреть процесс выращивания радужной форели (начальная масса 0,3 г) до достижения ею товарной массы в конкретных условиях. Весь цикл выращивания форели в бассейнах осуществляется на экспериментальной лососевой базе в г. Батуми с использованием черноморской, пресной и смешанной воды (табл. 29).
При выращивании использовали пресную грунтовую воду температурой от 12 до 19 °C с содержанием кислорода 0,2 мг/л и pH 7,2—7,4. Гравитационным аэратором количество растворенного в воде кислорода доводилось до 70—78 % насыщения. Температура морской воды колебалась от 8 до 25 °С, pH — от 7,4 до 8,3. Насыщение воды кислородом составляло 89—97 %.
Начальная плотность посадки была на 20% ниже конечной. Даже при высокой интенсивности водообмена низкое содержание кислорода в воде не позволяло выращивать рыбу при высокой плотности посадки. Только в зимний период при температуре 10 °С плотность посадки достигала 120 кг/м3. Содержание растворенного в воде кислорода на вытоке составляло 5 мг/л.
При выращивании рыбы необходимо проводить ее контрольное взвешивание для определения средней массы и установления суточной дозы корма, а также оценки влияния условий содержания на рост рыбы. Рыбу массой 0,3—50 г взвешивают 1 раз в декаду, массой более 50 г — 1 раз в 15 дней, а более 100 г — 1 раз в месяц. В прямоточных бассейнах выборку для контрольного взвешивания делают у втока, в середине и в конце бассейна. При массе мальков 0,3—3 г необходимо брать 3 пробы по 200—300 экз. каждая, при массе молоди 3—10 г — 2 пробы по 150—200 экз., при массе 10—50 г — 1 пробу по 100—300 экз., а более 50 г — 1 пробу по 100—130 экз. Контрольное взвешивание необходимо проводить в каждом бассейне.
В период выращивания молоди и товарной рыбы контролируют температурный и кислородный режим, расход воды, кормление и рост рыбы. Ежедневно бассейны очищают от экскрементов и погибших рыб, полную чистку бассейнов производят 1 раз в неделю. Проводят также профилактические мероприятия, сортирование форели и учет весовым способом количества особей в каждой размерной группе форели.
Источник
29.09.2019
Начиная с середины XX века использование установок замкнутого водоснабжения (УЗВ) в промышленном рыбоводстве – самая перспективная мировая тенденция.
При выращивании в УЗВ все параметры технологического процесса (кондиционирование воды, кормление, контроль и т. п.) совершаются при помощи автоматизированных устройств, действие которых может программироваться, а влияние природных факторов на ход технологического процесса становится минимальным.
Создание и эксплуатация современной установки замкнутого типа для выращивания ценных видов рыб – довольно расходные меры. Поэтому основным составляющим успешной в экономическом отношении работы является использование максимально ценных видов рыб, цена на конечную продукцию которых позволит окупить расходы на строительство установки и ее функционирование. Чем быстрее будет расти рыба, тем меньшее влияние на ее цену окажут эксплуатационные расходы, и, соответственно, ниже будет ее себестоимость.
Использование замкнутых рыбоводческих установок позволяет избежать сезонных колебаний температуры и непредусмотренных скачков расходов воды. Это достигается при помощи технических средств, оснащения и приборов автоматического управления. Как правило, выращивание рыбы в замкнутых установках проводится при оптимальной температуре воды. Для карпа, осетров, угря обычно устанавливается температура воды +24°С, что обеспечивает 8760 градусо-дней в течение года. Срок получения товарной рыбы в таких установках значительно снижается. Таким образом, к примеру, товарного карпа, весом 425 г, получают в замкнутых установках за 280 суток, а осетров, весом 1 кг, – за 365 суток.
Рассмотрим основные пункты, которые помогут обеспечить правильное функционирование и результативность использования УЗВ.
1. Размер установки
Товарные рыбоводческие хозяйства с использованием замкнутых установок строятся по принципу модульного построения. Каждый модель являет собой изолированную замкнутую систему, не связанную с другими модулями, что гарантирует нераспространение болезней рыб в случае их заражения в какой-то одной из установок и минимизирует потери в случае технических аварий.
Продуктивность такого модуля обычно составляет около 20 т рыбы в год.
Считается, что 15-20 т рыбы в год – это продуктивность установки, управляемой одним-двумя работниками (семейная ферма). Ферма продуктивностью 40 т будет состоять уже из двух модулей и т. д. размер фермы определяется экономической целесообразностью, что непосредственно связано с конкретными факторами: емкость рынка, цена конкурентов, налогообложение, расходы на энергоресурсы и прочее.
Выбор формы и размера бассейнов для рыбоводческой установки определяется чаще всего потребностями выращиваемого вида рыб. Некоторые из предлагаемых на рынке установок имеют один бассейн, в котором размещают садки, содержащие рыбу разных размеров.
Для рыб, обитающих в толще воды (форель, карп) используются глубокие объемные бассейны – силосы – прямоугольные бассейны с конусным дном, круглые и квадратные с закругленными углами, глубиной больше 1-1,5 м.
Удельное содержание воды в таких бассейнах составляет более 1,5 м3/м2. Замкнутые рыбоводческие установки, как правило, монтируются в закрытых помещениях, поэтому потребность в площади постройки снижается с ростом показателя м/м.
При выборе размера бассейна обычно руководствуются практическими соображениями относительно его обслуживания. Размер бассейна должен соответствовать размеру выращиваемой рыбы. Бассейны более маленьких размеров удобнее использовать при проведении работ по сортировке и облову рыбы. Если выращенная рыба изымается из установки частями, то облов одного бассейна не отражается на самочувствии рыб в других бассейнах. В другом случае, при извлечении части рыбы из одного большого бассейна остальная рыба получает стресс и может остановить потребление корма на несколько дней. Потеря прироста вследствие стресса отображается на экономике выращивания и приводит к сбою работы установки в целом.
2. Водоснабжение
Водоснабжение замкнутых установок сводится к разовому заполнению и ежедневной подпитке свежей водой в количестве 3-10% от объема воды в установке в сутки. Расход воды на выращивание 1 кг рыбы снижается до 0,2-0,5 м3. Чтобы избежать возможного занесения с водой личинок сорных рыб, паразитарных и других заболеваний, грязи в замкнутые установки, их заполнение и подпитку совершают, как правило, из артезианских источников.
На вход к бассейну подается чистая, насыщенная кислородом вода, а на выходе из бассейна стекает вода, загрязненная продуктами жизнедеятельности рыб, содержание кислорода в которой снижено вследствие его потребления рыбой. Степень загрязненности воды на выходе из бассейна связана с количеством корма, который дается рыбе.
3. Подача воды
В замкнутой установке, оснащенной оксигенаторами, в бассейн подается вода, перенасыщенная кислородом. При контакте струи воды с атмосферой проявляется эффект дегазации, и кислород теряется. По этой причине подающий патрубок углубляется, а перенасыщенная кислородом вода смешивается без потерь с водой в бассейне. Для создания кругового движения воды в бассейне подающая струя направляется по касательной к борту бассейна. При выходе из подающего патрубка воды с насыщением кислорода к 50-60 мг/л (500-700% насыщения) в бассейне не образуется значительной по размерам зоны перенасыщения воды кислородом. Это обстоятельство не всегда учитывается даже специалистами, опасающимися использования воды с таким уровнем перенасыщения кислородом.
4. Сброс воды
Как правило, уровень воды в отдельном бассейне поддерживается при помощи переливного устройства, а выход воды из бассейна устраивается в его нижней части. Таким образом, все, что попало в бассейн, собирается в приемной камере слива и должно быть удалено с потоком воды.
Приемные камеры бассейнов являют собой ловушки для остатков (фекалии, остатки корма, мусор). Для удаления остатков, накопившихся в камере, скорость оттока воды многократно и скачкообразно увеличивают. Турбуленты, возникающие при этом, поднимают осадок, который подхватывается потоком воды. В некоторых установках для этих целей устанавливались автоматические устройства. Обычно слив отстоя производится вручную при помощи шандорного перелива.
Очищение сетки и приемной камеры в ряде установок выполняется при помощи щеток, приводящихся в движение при помощи электропривода и определенной программы.
5. Насос
Насос обеспечивает бесперебойную циркуляцию воды в установке. При помощи насоса обеспечивается проток воды через все элементы системы, имеющие гидравлическое сопротивление. В зависимости от конструктивных особенностей установки в ней может быть два и больше контуров циркуляции.
6. Фильтры
Для правильного функционирования УЗВ необходимы будут два механических фильтра.
Один механический фильтр служит для удаления из воды останков, которые поступают из бассейна с рыбой (фекалии, чешуя, погибшие животные и прочее).
Биологическая обработка воды являет собой многоступенчатый процесс превращения органических соединений в нетоксические продукты, безопасные для рыбы. Процесс выполняется аэробными бактериями, которые потребляют значительное количество кислорода, и сопровождается образованием биомассы бактерий и изменением рН-воды.
Второй механический фильтр предназначен для задержки частиц биологической пленки, которая образовывается в процессе биологического очищения воды из блока биологического очищения с потоком воды.
7. Температурная коррекция
Правильная температурная коррекция обеспечивает комфортные температуры, оптимальные для выращивания рыбы. Как правило, коррекция предусматривает подогрев воды. К примеру, охлаждение воды с целью задержки нереста или, наоборот, его стимулирования.
Не исключено, что в районах с достаточно жарким, континентальным климатом летом будет необходимо охлаждение циркулирующей воды с целью предотвращения гибели рыбы из-за перегрева.
8. Бактерицидная обработка
Бактерицидная обработка предназначена для снижения уровня бактериального загрязнения циркулирующей воды, возникающего в условиях высоких биологических нагрузок в установке. При низких и средних нагрузках бактерицидная обработка, как правило, не применяется. Высокая бактериальная загрязненность может быть определена визуально, поскольку вода из-за наличия в ней бактерий теряет прозрачность и становится мутной.
9. Насыщение кислородом
Одним из главных элементов замкнутой установки является насыщение кислородом, поскольку все биологические процессы в установке проходят при значительном потреблении кислорода. Он расходуется как на дыхание рыб, так и на совершение окислительных процессов во время биологической обработки. Аппараты для насыщения воды кислородом могут быть разделены: один устанавливается перед подачей воды в бассейн, а другой – перед подачей воды на биологическую фильтрацию. В некоторых замкнутых установках аппарат насыщения воды кислородом и насос конструктивно объединены устройством под названием эрлифт.
10. Густота посадки рыбы
В характеристиках замкнутых рыбоводческих установок для выращивания товарной рыбы принято оценивать густоту посадки рыбы в бассейнах в кг рыбы на м3 воды в бассейне. Допустимое максимальное значение густоты посадки рыбы определяется в установке видом культивируемого объекта, обеспеченностью кислородом для дыхания и биологической фильтрации, а также мощностью устройств регенерации воды.
В установках, использующих технический кислород, который подается в воду через оксигенераторы, ограничений не существует, поэтому густота содержания рыбы может быть повышена. К примеру, густота посадки осетровых рыб может быть доведена до 83 кг/м, густота форели – до 100 кг/м, карпа – до 200 кг/м.
Превышение этого уровня приведет к непропорциональному увеличению концентрации продуктов метаболизма рыбы и биоценозу фильтра, увеличению кормового коэффициента и снижению скорости прироста массы рыбы.
11. Питание рыбы
Достижение рыбоводческих целей по переводу выращиваемых объектов на экзогенной питание во многом зависит от управления питанием. Кормление в замкнутых установках является практически единственным источником корма. В то же время, кормление оказывает влияние и на качество воды, циркулирующей в установке. Норму питания определяют как суточный рацион в процентах от веса тела рыбы. На размер рациона влияют вид рыбы, ее индивидуальный вес, температура воды, другие параметры воды, концентрация кислорода, концентрация технических веществ, освещенность, качество корма. Если все эти параметры учтены правильно, то рацион будет подобран оптимально и кормовой коэффициент (КК) будет минимальным.
Если рационы превышают оптимальные показатели, кормовой коэффициент также увеличивается. Рыба получает корм в большем количестве, чем она может усвоить в виде прироста массы. Чрезмерный корм либо не потребляется, как это происходит у форели, либо потребляется и переводится в фекалии, как у карпа. В любом случае, увеличивается нагрузка на очистительные сооружения, а качество воды снижается из-за накопления токсических веществ. В случае, если увеличение токсичности резко снижает уровень усвоения корма и последний только увеличивает загрязнение воды, процесс нарастания уровня токсичности может принять в замкнутой установке лавинообразный характер. С учетом влияния рациона кормления рыб на качество воды в установке лучше намного недокармливать рыбу, чем перекармливать.
12. Устройства отлова
Отловы рыбы в аквакультуре представляют собой определенную сложность. Довольно просто решаются обловы в плоских бассейнах объемом 8-10 м3. Вода из бассейна приспускается, рыба концентрируется в нижней части бассейна и вручную (сачками) перегружается в транспортные емкости.
Максимальный объем ручной перегрузки составляет 1000-1500 кг. В бассейнах большего объема (100-200 м3) этот метод неприемлем, поскольку объем выгружаемой продукции растет, и это занимает длительный период, к концу которого рыба может потерять товарные качества.
Выгрузка рыбы из бассейнов такого объема проводится в режиме нормального водоснабжения, а рыба концентрируется в одном конце бассейна при помощи специальной подвижной сетчатой стенки – концентратора. Выгрузка рыбы из высоких силосов совершается частично при помощи каплеров – больших сачков с механизированным подъемом-спуском, а окончательная выгрузка – вручную.
Ориентируясь главным образом даже на производство, к примеру, осетрового мяса, не всегда целесообразно планировать хозяйство мощностью 100-200 тонн рыбы в год. Во-первых, на создание такого предприятия необходимо потратить минимум 500 тыс. долл. США и не каждое юридическое лицо может позволить себе такие средства. Во-вторых, не везде можно реализовать такое количество продукции. В-третьих, промышленные предприятия не берут осетров, выращенных в УЗВ на переработку. Накладные расходы данных предприятий поднимают уже и без того высокую стоимость осетра и делают его рынке неконкурентоспособным. В-четвертых, для УЗВ необходимо помещение. Для стотонника это приблизительно 10 тыс. м2 и для его строительства необходимы дополнительные инвестиции. Если добавить сюда еще сроки окупаемости такого предприятия, фактории риска и прочее, то они также не пойдут в пользу выбора многотонника.
Поэтому, лучше иметь УЗВ малой продуктивности. Малые УЗВ уже давно положительно зарекомендовали себя в практике. Они широко используются на многих предприятиях, выращивающих рыбу в садках, бассейнах и прудах на теплых сточных водах электростанций или в регионах с соответствующим теплым климатом.
УЗВ с невысокой мощностью является альтернативой успешного вложения денег. При наличии небольшого стартового капитала можно быстро построить УЗВ продуктивностью 5-10 тонн рыбы в год с себестоимостью, к примеру, если выращивать осетра, – 5-6 долл. за 1 кг. Самоокупаемость установки – 1,5-2 года. Инвестиции в такую установку составляют не более 50 тыс. долл. США. Вложить такие деньги в производство могут не только предприятия, фермеры, а и индивидуальные предприниматели.
Производство в УЗВ осетров, форели, сомов и других видов рыб может стать хорошим семейным бизнесом.
Сумму инвестиций можно сократить на 10-15%, если при сооружении малой УЗВ использовать собственный труд, подсобный материал или упрощенный проект установки с использованием только основных узлов: бассейны, фильтры грубого очищения, биофильтр, систему аэрации.
Потребление воды в УЗВ в сотни раз ниже, чем в бассейновых хозяйствах с прямоточным водоснабжением. Источником водоснабжения могут служить источники, артезианские скважины, чистые ручейки, речка. Это позволяет значительно увеличить количество рыбоводческих хозяйств, приблизить их к местам потребления рыбы; снизить удельные расходы. Незначительное водоснабжение в сочетании с полным биологическим и механическим очищением сточных вод делает УЗВ безопасным для окружающей среды.
Использование интенсивной технологии может реально сократить сроки выращивания рыбы в 2-3 раза с минимальными затратами человеческих ресурсов, а выход рыбы при этом всегда больше, чем при выращивании в естественных водоемах.
Установки замкнутого водоснабжения дают возможность выращивать почти все виды рыб на протяжении всего года и получать высококачественную продукцию в короткие сроки.
Источник